skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Ching‐Chung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The electron/ion density/temperature and ion velocities observed by the ROCSAT-1 and DEMETER satellites are used to examine the daytime wavenumber-4 (WN4) feature in the equatorial/low latitude ionosphere during various months and solar activity levels of 1999–2010. A moving median process has been employed to isolate WN4 features and calculate their amplitudes, while the upward ion drift is used to estimate electric fields. The ROCSAT-1 and DEMETER ion density, ion temperature, and ion velocity generally yield prominent WN4 features over the center of Pacific Ocean, the west side of South America, the center of the Atlantic Ocean, and Southern India. The correlation coefficient between the deviation of ion density and upward ion drift is significant during high solar activity of 1999–2004, while it approaches to zero during low solar activity of 2004–2010. This confirms that the longitudinal variation of the upward ion drift is essential during high solar activity, and the associated amplitude of dynamo eastward electric field is in the range of 0.10–0.14 mV/m, which is 15–19% of daily dynamo electric field. By contrast, the deviation of the ion density and the northward field-aligned ion flow show a clear anti-correlation which yields a maximum coefficient in August during low solar activity but no correlation during high solar activity. These indicate that the longitudinal variation of the meridional field-aligned ion flow could play an important role during low solar activity, and its amplitude is in the range of 10.44–13.91 m/s, which is 10–13% of the ambient ion flows. 
    more » « less
  2. Abstract The Iterative Driver Estimation and Assimilation (IDEA) data assimilation technique was used with the Whole Atmosphere Model (WAM) to improve neutral density specification in the upper thermosphere. Two different neutral density data sources were examined to enhance the capability of simulating the global thermospheric state. The first were accelerometer estimates of neutral density from the Challenging Mini‐Satellite Payload (CHAMP) satellite. The second were neutral density estimates from the Global Ultraviolet Imager (GUVI) limb‐scan airglow observations aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. Due to the intensity of the November 2003 storm, two changes were necessary in WAM. The first was allowing the Kp geomagnetic index to exceed 9 and the second was changing the relationship between Kp and the solar wind parameters used to drive the model. With these changes, results show that IDEA effectively captures the thermospheric neutral density at the CHAMP satellite altitude and follows the time‐dependence through the November 2003 storm period. Furthermore, a cross‐comparison was conducted with the GUVI dayside limb scan measurements. GUVI neutral densities within 270–320 km show the closest agreement with WAM when CHAMP data was assimilated by IDEA. We speculate on the potential for observations from GUVI at 300 km to be used as a data source in the IDEA‐WAM simulations. These simulations demonstrate the utility of the IDEA data assimilation technique with physical models and that using either accelerometer observations or ultraviolet airglow limb measurement during extreme storm periods could be used. 
    more » « less